Sabtu, 25 Juni 2011

New song by Irfan Makki feat Maher Zain "I believe"...U have to see this guys...!!!

yesterday when i online in my fb, i see maher's zain fanpage status, they said there is a new song from maher zain with irfan makki,,,no need a long time, i directly go to youtube and download it...hahahaha
good song,,,and full of meaning to support our life to be better :P

here is a song:
and the lyrics:
IRFAN MAKKI
When you’re searching for the light
And you see no hope in sight
Be sure and have no doubt
He’s always close to you
He’s the one who knows you best
He knows what’s in your heart
You’ll find your peace at last
If you just have faith in Him
You’re always in our hearts and minds
Your name is mentioned every day
I’ll follow you no matter what
My biggest wish is to see you one day

Chorus:
I believe
I believe
Do you believe, oh do you believe?
MAHER ZAIN
Coz I believe
In a man who used to be
So full of love and harmony
He fought for peace and liberty
And never would he hurt anything
He was a mercy for mankind
A teacher till the end of time
No creature could be compared to him
So full of light and blessings
You’re always in our hearts and minds
Your name is mentioned every day
I’ll follow you no matter what
If God wills we’ll meet one day
Chorus
If you lose your way
Believe in a better day
Trials will come
But surely they will fade away
If you just believe
What is plain to see
Just open your heart
And let His love flow through
I believe I believe, I believe I believe
And now I feel my heart is at peace
Chorus
I believe I believe, I believe I believe
Lyrics: Maher Zain, Bara Kherigi & Irfan Makki
Melody: Irfan Makki & Maher Zain
Arrangement: Maher Zain

Kamis, 23 Juni 2011

Music: i found jason chen in youtube, his voice is awesome!!!

hey guys....to day i wont share a chemistry, i will sahare some nice song to hear. You now, jason chen? waw, he is a chinese man who live in USA and be a singer, but he like to cover a lot songs, his voice is cool, his english is awesome (not like my english...lol)....
i start to fan him yesterday when i found him in youtube, his video is be the one of the most watched these day, check out his video here guys,,,,i guarantee you will be like his songs!!!!!!!!!

these are some of his musci video in youtube:


most watched in youtube these day

my favorite song

grenade bruno mars (cover)

just a dream (my second favorite song)

perfect. pink (cover)....cool song again

talking to the moon, bruno mars (cover)

somebody to love (cover)

hate that i love you (cover)

forget you (cover)

lazy song (cover)

waw...he has a lot of video in youtube, i cant add all of them in one time, maybe it better for you to check out there by your selves guys.. :P
here are some site of jason chen:

Selasa, 21 Juni 2011

DISINFEKSI (BY CHLORINE)


By. Ilham, Energy Equity Epic (Sengkang)

Tambahan:

Untuk menurunkan kandungan bakteri coliform grup, dapat dilakukan dengan menggunakan beberapa metode/cara seperti yang disampaikan Pak Ardian Nengkoda (Unocal).

Oleh karena metode disinfeksi (by chlorine) sudah dilaksanakan, metode/cara ini sampai saat ini masih sangat baik digunakan.  Menjadi keheranan, kenapa hasil pemeriksaan sample air yang sudah melalui proses disinfeksi ini, kandungan coliform-nya masih tinggi? 240/100 ml.

Beberapa factor yang dapat mempengaruhi proses penggunaan disinfeksi (by chlorine) dalam water treatment antara lain:

1. Contact time
2. Temperature
3. pH
4. Konsentrasi organisme
5. Konsentrasi dan bentuk/tipe residu chlorine
6. Cukukpnya pencampuran awal antara chlorine dan organisme
7. Bentuk/tipe konsentrasi komponen air limbah
8. Ukuran alami material partikulat yang ada

Dalam metode disinfeksi chlorine, perlu dipahami efisiensi disinfektan (by chlorine) dimana biasanya dinyatakan sebagai ratio (perbandingan) antara jumlah mikroorganisme terbunuh terhadap jumlah organisme yang ada.  Hal ini dapat dipelajari dengan hukum chick (Chick’s Law):

N/No = e-kt   …………. (1)

Dimana N adalah jumlah satu tipe mikroorganisme yang dapat hidup pada waktu tertentu t, sedangkan k adalah konstanta waktu.

Untuk suatu konstanta persentase pematian (kill), hokum / persamaan (1) di atas dapat menjadi:

Ktp = Konstan  ……….(2)

Dimana tp adalah waktu kontak yang dibutuhkan untuk mencapai suatu tingkat persentase pematian tertentu, sedangkan tingkat konsentrasi dapat dijelaskan dengan persamaan :

Cntp = Konstan  ……..(3)

Dimana C adalah konsentrasi disinfektan (Chlorine, dll), n adalah konstanta  derivate experiment untuk satu system disinfektan dan organisme.
Kaitan antara tingkat konsentrasi dan waktu, khususnya konsentrasi chlorine sebagai HOCl yang diperlukan untuk pematian 99% E.coli pada suhu 0-6oC adalah 0,24 menit.  Jadi dengan titrasi chlorine sebagai HOCl sebanyak 1 mg/l, dalam waktu 0,24 menit baru mulai mencapai tingkat pematian yang efisien.

Jadi, masalah kontak time dan konsentrasi zat chlorine sangat mempengaruhi efisiensi pematian mikroorganise (coliforms grup) dalam pengelolaan air, selain factor-faktor yang disebutkan sebelumnya.




Iron removal: A world without rules


Iron removal: A world without rules
A compete guide to iron removal methods, equipment & their limitations.
By Scott Harmon

From the April 2003 edition of Water Technology magazine. 

Iron can often be detected visibly in water or by staining on plumbing fixtures.

There is one rule to keep in mind when selecting a method for iron removal — and that is there is no rule. You will find — as with all problem water applications — the solution is 50 percent science and 50 percent experience.

The following information describing the different types of iron removal process applications are the basics. Before using any of these applications, it’s good to have an understanding of the type of iron present; the equipment and its limitations; and the product and processes involved with method.

Equipment

Care must be taken when considering iron removal advice from different regions of the country as water temperature, pH, alkalinity, dissolved oxygen content and other factors will affect the actual results.

Most application failures are caused simply by not selecting the right equipment for the water conditions present. It is important to follow manufacturer’s guidelines regarding flow rates, backwash rates, pH levels, maximum iron input levels, water temperatures and any other application limitations that the manufacturer has noted in order for the equipment and media to deliver their best result as designed.

Water filter 

Most iron filtration systems operate on the principal of oxidizing the iron (oxidation) to convert it from a ferrous (dissolved or soluble) to a ferric or undissolved state. Once in the ferric state, iron can be filtered.

Water filters are the most widely used equipment in removing iron. Its popularity comes from its versatility due to the various media products available and the process involved with each media.

The most common reasons for filter failure are a lack of flow in backwash or a lack of frequency of regenerations. Low pH levels when using filters are another reason for unsatisfactory results.

Water softener

Water softeners exchange ions by design. When used in iron removal, the softener uses a cation resin to exchange iron for sodium, in addition to the calcium and magnesium exchanged for sodium in the softening process.

Softeners are commonly used in removing low levels of ferrous iron (1-3 ppm), though it is not uncommon to remove 10 or more ppm depending on water conditions and control settings.

The last thing a water softener needs is for the ferrous iron to oxidize and convert to a ferric state. Since pH plays a big part in how quickly this conversion takes place, it is important to note that softeners perform better on low pH, which will also prolong bed life.

In the ferric state, iron will coat the resin, plugging the exchange sites and fouling the resin. Iron fouling will eventually happen in any iron application and requires replacement of the media.

High saltings, longer backwashes, frequent regenerations and the use of iron cleaners are keys to longer bed life. However, even after taking these steps to prevent the bed from fouling, the resin will eventually succumb to the iron and require replacement.

Media selection

Each type of treatment has its own strengths and weaknesses. As in the selection of equipment, it is important to follow manufacturers’ recommendations and note any application limitations such as water temperature, pH alkalinity and dissolved oxygen content to get the best result.

To do this, water treatment professionals need a clear understanding of all limitations of the product and equipment selected.

Filtration using various means of oxidation is the most common method of iron removal. Depending on the media selected, other common processes such as ozone, aeration, chlorine or peroxide injection may be used to boost the oxidizing properties of the water being treated.

• Greensand
Greensand is one of the oldest but proven oxidation technologies. Potassium permanganate, itself an oxidizer, is used to regenerate the greensand.

In this application, potassium permanganate produces manganese dioxide on the surface of the mineral and — once the water comes in contact with it — any iron is immediately oxidized. The iron can be filtered and then cleaned away in the backwash cycle. Greensand is also effective with low levels of H2S (hydrogen sulfide) and manganese.

Synthetic greensand is a granular mineral with a manganese dioxide coating having the same ability as regular greensand. It is much lighter and requires less of a backwash rate than standard greensand.

Manganese dioxide
Manganese dioxide is a naturally mined ore with the ability to remove iron, manganese and hydrogen sulfide. The hydrogen sulfide capability exceeds that of either greensand or synthetic greensand and requires no chemicals to regenerate.

It does, however, require adequate amounts of dissolved oxygen in the water as a catalyst and may require some type of pre-oxidation to achieve its maximum ability.

• Birm
Birm has the ability to remove iron and manganese and has no effect on hydrogen sulfide. Like manganese dioxide, birm also uses dissolved oxygen as a catalyst and may require some type of pre-oxidation in cases where the dissolved oxygen content is too low to affect a maximum iron removal result.

• Redox
Redox media, which requires adequate dissolved oxygen to be effective, consists of two metals - 85 percent copper and 15 percent zinc. These two dissimilar metals create a small electrical field in the bed that will not allow bacterial growth in the media.

This property earns redox the unique distinction of being effective on bacterial iron without the use of chlorine injection and being rated as bacterial static.

Effective on removal of iron and hydrogen sulfide, able to reduce chlorine and heavy metals such as lead and mercury, redox is not effective with manganese.

The biggest drawback for this media is its weight. Being almost twice as heavy as other minerals, it requires more than twice the backwash rate of other minerals. Sizing mineral tanks is crucial.

Catalysts & Considerations

Once you have identified the enemy and selected the equipment with compatible backwash and flow rates for the media selected, the water itself must be scrutinized.

Check for dissolved oxygen and pH levels and determine what, if any, pre-treatment is necessary for the selected application to deliver maximum iron removal efficiency.

What is the role of pH?

The pH of a given water source plays an important role in how quickly ferrous (dissolved) iron converts to a ferric (solid) state. The higher the pH, the faster iron will convert to the ferric state that can then be filtered.

This is good in all equipment selections with the exception of a water softener where the ferric iron plugs the exchange sites and fouls the resin.

When using an iron filter a pH above 6.5 is necessary for iron to properly convert and is the recommendation of most manufacturers. However, most experienced water treatment professionals agree that a pH above 7.0 is a must and an 8.0 to 8.5 pH greatly enhances the chance of a successful application.

If it is necessary to increase the pH level, chemical feed of either sodium carbonate (soda ash) or sodium hydroxide (caustic soda) is preferred over a filter filled with calcium carbonate or magnesium oxide, as the filter method may foul quickly.

Pre-oxidation

Most chemical-free iron filters and several chemical filter media require some dissolved oxygen in the water to act as a catalyst. Pre-oxidation is required in cases where the dissolved oxygen content is too low.

Pre-oxidation can come from aeration, chlorine or peroxide injection, ozone and other methods.

Chemical feed

There are several types of chemical feed applications. Using sodium carbonate or sodium hydroxide to raise pH is common. Using 5 percent to 10 percent chlorine or 7 percent hydrogen peroxide as oxidizers to the water before a filter is also widely used.

Different rules apply to each of these methods, from retention or contact tanks to using static mixers. When using different chemicals together, it’s important to understand the compatibility of the chemicals and the safety considerations.

For greater success, follow the manufacturers’ recommendations closely regarding proper feed rates and installation when injecting chemicals.

Aeration

When aeration is used as a pre-oxidizer it is generally done with either an air inductor or an air pump.

An air inductor is a venturi installed inline. The water flowing through the inductor creates a vacuum and sucks air into the water line. The faster the water flows, the more air induced into the water.

Watch for pressure drop and perform routine maintenance of the inductor, as they will clog with iron over time.

The air pump method allows more air induced into the water, as a mechanical pump is used to force air into the water. A contact tank is often used.

This method has proven effective with the only cautions being maintenance to the pump and injection fittings.

Ozone

Ozone is a powerful oxidizer and when used properly can be effective on large amounts of iron. Similar to aeration, ozone is injected into water via a contact vessel as a pre-treatment to filtration.

Ozone generators come in many designs and sizes and a full understanding of the process is necessary for success. Due to ozone’s expense it is usually applied on iron levels higher than normal filtration is known to handle effectively.

Scott Harmon CWS V, CI is manager of technical support for the RainSoft division of Aquion Partners L.P, Elk Grove Village, IL. Harmon started in the water treatment industry as an installer and service technician, and was the service manager for a local RainSoft dealer before joining Aquion as international service trainer.

From the April 2003 edition of Water Technology magazine. 
For a concise description of how the types of iron are identified by the same author, please go here.

Removal of Colored Substances from Molasses Waste Water by Biological Treatment Systems Combined with Chemical Treatment


Suntud SIRIANUNTAPIBOON*1, Kanidta CHAIRATTANAWAN*2 and Sadahiro OHMOMO*3
*1:Department of Environmental Technology, School of Energy and Materials, King-Mongkut's Institute of Technology Thonburi (Bangkok 10140, Thailand)
*2:Faculty of Engineering, Sripathum University (Bangkhen, Bangkok 10900, Thailand)
*3:Department of Animal Products, National Institute of Animal Industry (Tsukuba, Ibaraki, 305-0901 Japan)


Abstract


In this study, we attempted to combine a biological treatment process which used Bi-Act SCBA system (SCBA) and chemical treatment process to remove chemical impurities such as COD, BOD5 and nutrients as well as colored substances from the molasses waste water (MWW). In the pilot plant experiment, SCBA unit A (SCBA-A) was used for the pre-aeration and uniformity of the MWW before biological treatment. The sludge volume (SV30) was about 50 ml/l in the aeration unit of the SCBA-A. The COD and colored substances could not be removed in this step. However, in both SCBA-B and SCBA-C, SV30 increased up to 350-400 ml/l. At the same time, approximately 44.0% and 22.9% of COD of the effluents from SCBA-B and SCBA-C were removed, respectively. On the other hand, the removal of colored substances in SCBA-B and SCBA-C (about 25.0 and 13.3%) was not appreciable. However, the colored substances in the MWW passing through SCBA-B and SCBA-C could be easily precipitated by chemical agents compared with the original MWW. About 93% of the colored substances of the effluent from SCBA-C could be removed in the chemical precipitation step, while the colored substances in the original MW.

Discipline: Food
Additional key words: melanoidin, molasses waste water, Bi-Act SCBA, chemical precipitation
1~30): Click here for References
Introduction

Many by-products such as molasses, bagasses and fiber cake are produced from cane sugar factories. Among them, molasses is the most important product4,10) because molasses has a high commercial value due to its use as a carbon source for fermentation industries, biofertilizer and feed for domestic animals5). However, the use of molasses as a raw material for fermentation industries is associated with the presence of a large amount of colored substances which remain in the fermentation residue after recovery of the products. The main colored substance, melanoidin, can hardly be decomposed by usual biological treatment processes1,11) and accounts for the high COD value, which is a major problem for pollution control5).

In Thailand, all the alcohol-producing factories use molasses as raw materials and discharge molasses waste water (MWW) accounting for about 10 times the amount of alcohol produced. Several processes7-9) were used for treating the MWW. The use of MWW as feed for aquatic organisms is not suitable economically due to the small volume used. For biofertilizer use, the quality is not as high as that of other biofertilizers or chemical fertilizers (it may be similar to that of soil conditioners). Several alcohol factories have attempted to treat MWW by anaerobic methods such as methane fermentation, anaerobic pond or facultative anaerobic pond, followed by aerobic treatment such as activated sludge, aerated lagoon or oxidation pond3,6). However in these treatment processes, the colored substances of MWW still remained and the COD content in the treated waste water was higher than the standard value authorized by the Ministry of Industry, Thailand. Presently, treatment processes such as chemical precipitation, chemical adsorption or carbon adsorption are used for the removal of the colored substances. However, color removal by the above processes still has disadvantages due to the high operation cost, high consumption of chemicals, fluctuation of the color removal efficiency and the high volume of solid waste produced.

Against this background, we applied biological and chemical processes to MWW from the anaerobic pond of the alcohol factory to remove colored substances, COD and BOD5 with high efficiency and at a low cost. The experiments on the biological process were carried out on a pilot plant scale, using the Bi-Act SCBA system12) which is characterized by low energy consumption and high efficiencies for aeration and mixing in the aeration tank. In this paper, we report the results of the experiments.
Materials and methods

Bi-Act SCBA unit: Three units of Bi-Act SCBA (SCBA)12) supplied by Uni San Pol. Co. Ltd. were used in these experiments. The scheme of the processes shown in Fig. 1 was as follows: 1 unit of 10 m3 storage tank, 2 units of 10 m3 SCBA (unit A and unit B), 1 unit of 4 m3 SCBA (unit C) and 2-tanks for 1 m3 of nutrient supply. This pilot plant was installed in the waste water treatment plant of Sang Som Distillery Co. Ltd., Nakhon Pathom Province, Thailand.
Fig.1.Scheme of the pilot plant of Bi-Act SCBA system(22 KB)

MWW: The MWW used in this experiment was collected from the anaerobic pond of Sang Som Distillery Co. Ltd.
Supply of nutrients: Cassava flour was supplied as a nutrient for increasing the BOD5 content in the MWW. Twenty kg of cassava flour was fermented for 1 week in the S1 tank as shown in Fig. 1. The supernatant from S1 tank was transferred to S2 tank before being fed to the SCBA system.

Start-up procedure and operation of the pilot plant unit: The concentrated sludge suspension (MLVSS=10,000 mg/l) from the central waste water treatment plant of BANG-PA-IN Industrial Estate, Ayuthaya, Thailand, was used as the inoculum for starting this pilot plant. The start-up procedure was performed as follows: First, 4, 4 and 2 m3 of concentrated sludge suspensions were put in SCBA-A, SCBA-B and SCBA-C (aeration tank), respectively. Second, water (softened water) was added in all 3 units up to the optimum level and the system was operated without influent feeding overnight. Thereafter, the MWW from the storage tank was fed into the SCBA system at the flow rate of 2 m3 /day. At the same time, the nutrients from tank S2 were fed into SCBA-B at the flow rate of 2 m3/day. The system reached the steady state after 2 weeks' operation. The flow rate of the influent from the storage tank slowly increased up to 4 m3/day within 1 week. Also the flow rate of water (underground water or river water) used instead of the nutrient solution increased up to 4 m3/day within 1 week. The MLSS, SV30 and pH of the system were monitored until the system became steady. The effluent from the clarifier of each SCBA unit was taken for the analysis of BOD5, COD, SS, TKN, TP, pH and color intensity. Also the mixed liquid from the aeration section of each SCBA unit was collected for measuring the pH and SV30 during the period February-December 1996.

Color removal by chemical precipitation: The effluent from the clarifier of SCBA-C was collected and used for the determination of optimum concentrations of chemical agents to remove the colored substances. The chemical agents used for precipitation of the colored substances were FeCl3, Al2 (SO4)3 and sodium hydroxide. The effluents from each SCBA unit were used to determine the optimum color removal efficiency. All the experiments were performed on a laboratory scale. A certain amount of FeCl3 (range of 1 to 8 g) or Al2 (SO4)3 (range of 4 to 32 g) was added into 1,000 ml of the effluent from SCBA-C. Thereafter, the mixtures were adjusted to pH 7 by the addition of sodium hydroxide solution. The supernatants were collected for the determination of the color intensity, pH and COD.
Assay of chemical composition of the waste water: The BOD5, COD, TKN, TP and SV30 were determined by a standard method of analysis2) .

Estimation of color intensity of the waste water and removal yield: The sample was diluted with 0.1 M acetate buffer solution (pH 6.0) after centrifugation at 6,000×g for 15 min and the color intensity of the diluted solution was measured at 475 nm with a spectrophotometer (LKB, model Biochrom Ultra-space 2, England). The percentage of color removal was expressed as the color intensity of the waste water treated against that of original waste water. The removal yield was expressed as the degree of decrease in the absorbance at 475 nm against the initial absorbance at the same wavelength
Results

Chemical properties of the MWW: The MWW collected from the anaerobic pond of the waste water treatment plant of Sang Som Distillery Co. Ltd. for this experiment still contained a high level of chemicals and showed a high color intensity as indicated in Table 1. Chemical properties such as COD, BOD5, contents of total solids and total volatile solids were 33,643, 3,500, 42,250 and 23,180 mg/l, respectively. The color intensity was about 33-35 (optical density at 475 nm).

Table.1.Chemical properties of MWW from anaerobic pond of Sang Som Distillery Co. Ltd., Thailand(26 KB)

Start-up of the SCBA system: By using the concentrated sludge solution from the central waste water treatment plant of BANG-PA-IN Industrial Estate, the microorganisms in both SCBA-B and SCBA-C could easily grow. The SV30 in the aeration tanks of SCBA-B and SCBA-C reached values of 300 and 350 ml/l, respectively within 2-3 weeks, while the level of SV30 was low (( 50 ml/l) in the aeration tank of SCBA-A. The SV30 in the aeration tank of both SCBA-B and SCBA-C remained at the levels of 300 and 350 ml/l during the treatment as shown in Fig. 2.

Fig.2. SV30 profiles in the aeration tank of each SCBA unit in the start-up of the system(16 KB)

Continuous treatment by SCBA system: At 3 weeks after the start-up step, the system reached a steady state with an influent flow rate of 4 m3/day and diluted water was fed into the SCBA-B at the rate of 4 m3/day. The removal percentage of the impurities of the waste water (COD, BOD5, SS and TKN) was high in effluents from SCBA-B and SCBA-C as shown in Table 2, while in the SCBA-A system, the impurities could not be removed effectively. The COD content in the effluent from both SCBA-B and SCBA-C decreased to 44.0 and 22.9%, respectively. Other impurities such as SS, TKN and total phosphate were also removed. For color removal, in SCBA-A the level was only 4.0%, while in the SCBA-B and SCBA-C systems, the removal of the colored substances reached values of 25.0 and 13.3%, respectively, as shown in Table 2. The system could be operated smoothly with a constant COD concentration of the effluents from each SCBA unit up to 36 days, as shown in Fig. 3.

Table.2.Cheical properties of influent and effluent of each SCBA unit(49KB)
Fig.3. COD profiles of the influents and effluents of each SCBA unit during the continuous operation(20KB)

Color removal by chemicals: The effluent from the clarifier of SCBA-C was used as the color solution in the chemical precipitation step. Various concentrations of FeCl3 in the range of 0-12% were added to the effluent and the mixed solution was adjusted to pH 7.0. The results are shown in Fig. 4. Addition of FeCl3 at a concentration of 6% in the solution resulted in the highest color removal efficiency. Various concentrations of Al2(SO4)3 solution in the range of 8-30% were also added to the effluent and the mixed solution was adjusted to pH 7.0. The results are shown in Fig. 5. Addition of Al2(SO4)3 at a concentration of 20% in the solution was adequate for color removal.
On the other hand, 3 effluents from SCBA-A, SCBA-B and SCBA-C were tested for the removal of color by the addition of FeCl3 (6%) or Al2(SO4)3 (20%). After adjustment of the pH to 7.0, the colored substances in the effluents from SCBA-B and SCBA-C were easily removed at the rates of about 28 and 93%, respectively, while those from SCBA-A could not be removed as shown in Table 3. The removal rate by the addition of FeCl3 and Al2(SO4)3 was almost the same.

Fig.4.Remocal of colored substances from the effluent of SCBA system by the addition of carious concentrations of FeCl3 solutions(11 KB)
Fig.5.Removal of colored substances from the effluent of SCBA system by the addition of various concentrations of Sl2(SO4)3 solutions(9 KB)
Table.3. Comparison of percentage of color removal by chemical precipitation in various kinds of effluents(26 KB)
 Discussion

We carried out experiments to remove chemicals such as COD, BOD5, TKN, total phosphorus and colored substances by using the SCBA system combined with the chemical treatment process. The SCBA system, which is a kind of activated sludge system, consisted of a new compact unit for biological treatment used in both domestic and industrial waste water treatment plants in Thailand. The rotary drum in the aeration tank of the system was specially designed, and the mixed liquid in the aeration tank was fully supplied with air and completely mixed.

Actually, each unit of SCBA displayed several characteristics. The chemical properties of the effluent from SCBA-A were not different from those of the influent. Sludge (MLSS) generation in the aeration tank was minimal and there was a high concentration of toxic substances in the waste water9). The effluent from SCBA-A was diluted with water and transferred to SCBA-B. In SCBA-B, the BOD5 and COD were removed easily as shown in Table 2. The sludge concentration in the aeration tank (SV30) increased up to 400-500 mg/l, reflecting normal conditions of activated sludge process3,6). In SCBA-C, the results were the same as in SCBA-B. By the SCBA system, the colored substances in the influents of SCBA-B and SCBA-C could be removed at percentages of 25.0 and 13.3%, respectively.

For color removal by the chemical treatment process, the effluent from SCBA-A was hardly precipitated by FeCl3 and Al2(SO4)3 even when a high concentration of chemicals was used. However, the color of effluents from both SCBA-B and SCBA-C could be easily removed and the percentages of color removal were 28 and 93%, respectively, as shown in Table 3.

Based on the results obtained, the SCBA system was found to be suitable for the treatment of MWW as well as the hitherto known activated sludge system3,6,8). Furthermore, the SCBA system enabled to remove colored substances in comparison with the activated sludge system. Namely, the colored substances could be removed at a percentage of about 10% by this system directly and about 90% of the colored substances remaining in the effluent from the system were easily precipitated by treatment with 6% FeCl3 or 20% Al2(SO4)3. The reason for easy precipitation could not be determined. It is suggested that the colored substances may have changed or that their structure may have been modified during the passage through the SCBA system.